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from the three H atoms, or two H's and a D for CH3D, 
'would be equal to the Van der Waals distance. In the 
argon matrix the separation of the satellite components 
is 24 G from the main H lines. The most favorable 
orientation of the CH3 group of CH3D with the three 
H's coupled equally would require an internuclear 
separation of approximately 1.3 A between the atomic 
H and each of the three CH3 hydrogens to give such a 

I. INTRODUCTION 

BECAUSE of the high rate of phonon generation by 
hot carriers, and the long lifetimes for acoustic 

phonons at low temperatures, it has been reasoned that 
significant deviations from the thermal equilibrium 
phonon distribution might be found at low tem
peratures.1"4 Experimental evidence that such devia
tions do in fact occur in ^-germanium has been obtained 
by Zylbersztejn.4 It is the purpose of the present paper 
to further explore theoretically the hot-electron-caused 
disturbance of the phonon distribution in a many-
valley semiconductor, and the effects it has on electron 
transport. Numerical evaluation will be carried out for 
the case of ^-germanium. 

II. STEADY-STATE PHONON DISTRIBUTION 

Consider the situation at 4°K in an ^-germanium 
sample with saturation carrier concentration of the 
order of 1014/cm3. At low fields there are few free carriers, 
and no disturbance of the phonon distribution is ex-

1 E. M. Conwell, V. J. Fowler, and J. Zucker, quarterly reports, 
Contract No. DA 36-039-SC-89174, U. S. Army Signal Research 
and Development Laboratory, Fort Monmouth, New Jersey, 
15 May 1962-15 May 1963 (unpublished). 

2 V. V. Paranjape, Proc. Phys. Soc. (London) 80, 971 (1962). 
3 H. Sato, J. Phys. Soc. Japan 18, 55 (1963). 
4 A. Zylbersztejn and E, M, Conwell, Phys. Rev. Letters 11, 

417 (1963). 
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separation. This does not seem to be an unreasonable 
figure, although the satellite spacing is larger for the 
krypton matrix. 
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pected. When the breakdown field is reached, carrier 
concentration increases rapidly. For a range of fields 
starting at about two to three times the breakdown 
field it is found typically,5 in samples of small cross 
dimensions, that carrier concentration remains essen
tially constant, although at a value somewhat less than 
the saturation value. For fields at the beginning of this 
range, it is expected that the average energy of the 
electrons corresponds to a temperature of the order of 
30°K since approximately this temperature is required 
to produce essentially complete thermal ionization of 
the impurities. At higher fields, when the average 
energy of the electrons corresponds to a temperature of 
about 70 °K, optical phonon emission will become 
significant.6 The calculations of this paper will apply 
to the range of fields in which carrier concentration is 
constant and scattering of the electrons is by intra-
valley acoustic lattice modes and, to a small extent, 
impurities. 

Because the scattering is essentially elastic, whether 
or not the phonons have the thermal equilibrium distri
bution, the distribution function/(i) of the carriers in the 
itik valley will take the form of a function of energy only, 
fo(i)(S), plus a small drift term, in general not in the 

6 See, for example, S. H. Koenig, R. D. Brown, III, and W 
Schillinger, Phys. Rev. 128, 1668 (1962). 

6 E . M. Conwell, Phys. Chem. Solids 8, 234 (1959). 
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Calculations are made of the steady-state phonon distribution at low temperatures and high electric fields 
in a many-valley semiconductor, and numerical evaluation is carried out for w-germanium for which all para
meters involved are known. It is concluded that the departure from thermal equilibrium will be significant for 
germanium samples in which the product of carrier concentration n and cross-dimension L is of the order of 
1013/cm2, and will of course increase as the nL product increases beyond this value. The disturbed phonon dis
tribution is found to be quite anisotropic. The relaxation time tensor and the mobility /* in the presence of the 
disturbed distribution are calculated. It is found that, when the disturbance is not too large, /x oc (nL)~lE~i, 
where E is electric field intensity. This has been shown to agree with experimental data for w-Ge at 4°K. The 
question of whether these effects have been observed in *-Ge is discussed. 
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field direction because of the anisotropy of the constant 
energy surfaces. The number of phonons with wave 
vector q in the disturbed phonon distribution may also 
be written as a sum of two terms: 

Nq=Nqo+qdgP(q). (1) 

Unlike the situation for the simple model of band struc
ture, the first term, generated by the fo{i)(§) terms in 
the electron distribution, is anisotropic because the 
matrix elements for phonon generation are. I t does not, 
however, represent any net crystal momentum. The 
second term, generated by the electron drift term, 
represents a net crystal momentum in a direction, 
specified by d, that corresponds to the electron drift 
direction if that is a symmetry direction, but otherwise 
does not. Since the electron drift term is small in the 
case under consideration,7 the phonon drift is expected 
to be also, and we shall generally neglect it in the con
siderations that follow. I t may be noted that in the 
field range where impact ionization, which is an in
elastic scattering process, is important, the drift terms 
may be relatively greater in magnitude. 

Since the electron-phonon interaction is not strong, 
we may use perturbation theory to calculate the rates 
of phonon emission and absorption. Due to the elec
trons in the ith valley the rate of change of Nq is given 
by 

/dNq\M 2w 
( — ) =TECI(k,^+l|H'|k+q,iVq)l1 

\ dt J h k 

X5((Sk+feq-<Sk+q)/w(k+q) 

H(M-q,tfq-l|ff'|Mrq)|» 

X 5 ( « k + q - « « , - « k ) / w ( k ) ] , (2) 

where the first term gives the rate at which phonons 
are emitted due to electron transitions from k + q to k, 
the second the rate at which phonons are absorbed in 
electron transitions from k to k + q. The k vectors are 
all measured from the valley minimum, and the sum
mation is over all k vectors in the ith valley. The 
argument of the 5 function is the difference between the 
final and initial energies of the system. 

In converting the summation over k to an integra
tion, it is convenient to change to the coordinate system 
in which the constant energy surfaces are spheres 
rather than ellipsoids. This may be done by the usual 
substitution 

ki= (m,i/fno)ll2ki*, i=x,y,z, (3) 

where xy y, and z are the principal axes of the ellipsoids, 
z being the longitudinal axis, the nn the effective masses 
in the principal axis directions, and mo the free electron 
mass. In this system the energy of a carrier is fi2k*2/2?no. 

7 For an evaluation of this term see E. M. Conwell, Phys. Chem. 
Solids (to be published); see also Ref. 3. 

A transformation similar to (3) must also be made for 
other vectors to preserve vector relationships. 

Since nothing in the integrand depends on the ori
entation of k* or k*+q* relative to any fixed axis, we 
may for convenience choose the z* axis in the q* direc
tion. Then, since the phonon energy may be neglected 
compared to the hot carrier energy, integration over 0*, 
involving only the 5 function, gives simply 

r (h2 h2q*2\ m0 
/ S i — k*fcos6*-\ )sin0W= 

Jo W0 2m0/ h2k*q* 

for 0<q*<2k*. (4) 

For g* outside the range specified the integral is zero. 
For the many-valley model the matrix elements for 

scattering by intravalley acoustic modes are of the form8 

S«2ft««(q) f 8Nqa) 
|(k±q|^|k)|»= —\Nqa+h+— , (5) 

2Vpuc
2(q)( 2 J 

where for longitudinal waves a=l and 

Si=Sd+'Eucos2di, (5a) 

while for transverse waves a = / and 

H*=E^sin0iCos0t, (5b) 

Ed and Su being the deformation potentials for dilata
tion and uniaxial shear, 0; the angle between q and the 
z axis in the ith valley, p the density of the crystal and 
V its volume, ua the appropriate sound velocity, and 
8Nqa—+l for emission, —1 for absorption. In what 
follows we shall neglect the anisotropy of the sound 
velocity, taking an average value for ui and for ut. 
Also, we shall assume that we have ellipsoids of revolu
tion, with mx=my—mhmz—mi. Since we intend to 
neglect the drift terms, we may replace Nqa in (5) by 
Nqao, and / ( i ) ( k ) in (2) by /o ( i ) (£) . After these substi
tutions nothing in (2) depends on the orientation of k*, 
and integration over <p* yields simply a multiplying 
factor 2w. Incorporating into (2) the matrix elements 
(5) and the results of integration over 0* and <p*, we 
obtain 

/dNqa\W mtm^m2 q r™ 

= ; {(Nqa+l)fo^(^+^q) 
\ dt / 2Trmo1'2h2pua q*J Q*/2 

-Nqaf0
(i)(S)}k*dk*. (6) 

The subscript 0 on Nqa has been omitted for conciseness 
of notation. 

The form of the distribution function /o(*} depends 
on the Nqa, on the relative amount of impurity scatter
ing, and on the frequency of interelectron collisions. 
According to the criterion developed by Frohlich and 
Paranjape, interelectron collisions are sufficiently fre-

8 C. Herring and E. Vogt, Phys, Rev, 101, 944 (1956). 
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quent at the electron concentrations and energies of 
interest to have an important influence on the dis
tribution function.9 We shall therefore assume that the 
distribution is a Maxwell-Boltzmann one: 

fo^(8) = Zn^/Nc(Te^exp(-S/koTe^) (7) 

where 
Ne(T,M) = 2 (2irmt^mi^koTe^/h2y12, (8) 

the effective density of states in the ith. valley at a 
temperature Te

(i). Inserting (7) into (6), performing 
the integration and summing over the valleys to obtain 
the total generation rate, we find 

dNqa mt(mim0)
112 a nw q 

dt 2irh4pua *-i a Nc{Te^)q* 

X{(^q«+l)^*W f f l a /*o r* ( 0-^q«}er*2^2 /8^*o^ (°, (9) 

where g is the number of equivalent valleys. To express 
all quantities in (9) in the untransformed momentum 
space, we make use of the relation 

/Wo\1 / 2 / mt \1 / 2 

f = q[ — ) sm%+— costy) 

^q ( — ) C^fo). (10) 
\mtt 

The expression (9) gives the rate of increase of Nqa 

due to electronic processes. To obtain a steady state 
this rate must be balanced by the rate of decrease due 
to other processes. From the experimental and theo
retical work on phonon drag contributions to the 
thermoelectric power in germanium,10,11 it can be de
duced that at 4°K, for small disturbances of the phonon 
distribution, phonon-phonon interactions may be neg
lected, and boundary scattering is the dominant 
relaxation mechanism. For that case the rate of re
laxation is given by 

dNqa/dt= - (Nqa-Nqa)/rb, (11) 

where Nqa is the thermal equilibrium number of 
phonons with wave vector q and polarization a, and r& 
depends on the dimensions of the sample and on 
whether there is specular reflection at the surface. For 
the case that we are considering, the disturbance of the 
phonon distribution is not small, yet not so large that 
phonon-phonon interactions should again become im
portant. On the other hand, the experimental data of 
Zylbersztejn4 show that boundary scattering is quite 
important. For a phonon distribution of the form (1) 
then, the relaxation rate of the drift term should still 
be given by r&, since this represents a momentum re-

9 H. Frohlich and B. V. Paranjape, Proc. Phys. Soc. (London) 
B69, 21 (1956); see also R. Stratton, Proc. Roy. Soc. (London) 
A242, 355 (1957). 

10 T. H. Geballe and G. W. Hull, Phys. Rev. 94, 1134 (1954). 
11 C. Herring, Phys. Rev. 96, 1163 (1954). 

laxation time. As pointed out by Sato,3 the relaxation 
rate of the other term would in general be different 
since it depends on the rate at which energy rather than 
momentum is removed from the distribution. To obtain 
a measure of this rate we assume, as was done by Casimir 
in the treatment of thermal conductivity,12 that the 
scattered radiation leaving a point on the surface has 
the equilibrium distribution appropriate to the tempera
ture at the point. Since in the usual experimental situa
tion the sample is immersed in liquid helium and the 
average power input is small even at high fields, the 
surface temperature must be quite close to the bath 
temperature. As a consequence, the energy relaxation 
time must be of the order of the time required for a 
phonon to reach the surface. Experimental evidence 
that the energy relaxation time is not much longer than 
this, at any rate, is provided by the fact that application 
of flat voltage pulses of several microseconds duration 
resulted in flat current pulses.4'13 This indicates that the 
steady state was achieved in less than a microsecond. 
For samples with cross dimensions \ cm or less, the 
average time required for a phonon to reach the 
boundary is less than a microsecond. We shall assume 
therefore that the relaxation rate of the first term of (1) 
is given by (11) with Tb=L/ua, where L is the cross 
dimension of the sample, assumed small compared to 
its length. This includes no correction for the fact that 
some phonons travel a distance smaller than L in 
getting to the surface, but that seems to be an un
necessary refinement here. 

Setting the total rate of change of iVqa, i.e., the sum 
of (9) and (11), equal to zero, and solving for Nqa, we 
obtain the steady-state value 

Nqa= (Nqa+Z FaM(r*Wc<°™<rto*^T'™y 

( 1 + E Fa
ii)e-v{i)cw(l-(T*<**°/k<>T.W)) (12) 

where 

L mt3l2mp2 n^ %2 

Fa(i> = koTed) (13) 
2 i r f t W Nc{Te^) C^($i) 

y^^h^/SmtkoT^K (14) 

For haiqc^koTe^, and Nqa small compared to the other 
term in the numerator, both of which conditions are 
well satisfied for most of the phonons of interest, (12) 
goes over to the form given earlier4 (except for a trivial 
difference in notation). In the form (12) it is easily 
seen that, for Te equal to T, the lattice temperature, 
Nqa=N<La. If we set g = l , mt=mh Hw=0 a n d E d = £ i , 
the deformation potential for the simple model, the 
many-valley model goes over to the simple model, and 

12 H. B. G. Casimir, Physica 5, 495 (1938). 
13 J. Zucker and D. R. Frankl, General Telephone & Electronics 

Laboratories Inc. (private communication). 
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(12) is the same as the expression derived by Paranjape 
for that case.2 We note, however, that unless Fa is very 
large, (12) is not at all in the form for which it can be 
said that a new phonon temperature exists, as assumed 
by Sato.3 It will be seen later that such large values of 
Fa are not likely to be attained, in Ge at least. 

Before we carry out any numerical evaluation of (12), 
it is useful to consider the size of the phonons with 
which we are concerned and the values of Nqa. We may 
obtain an average wave vector (q) for these phonons as 
follows. Because of the condition of conservation of 
crystal momentum, the average q of the phonons in
volved in intravalley scattering is of the order of the 
average k, which we shall take as the k of an electron 
with the average energy 3koTe/2. This k is of course a 
function of direction because of the anisotropy of the 
constant energy surfaces. If we arbitrarily choose an 
average mass, to be denoted by (m), the average q 
may be written 

(q)=(3(m)koTe/h*)W. (15) 

For ^-germanium, in which the mass ranges from mt 

= 0.082mo to mi= 1.6m0, a reasonable average is 0.25wo, 
and we shall use this value of (m) to define (q). Denoting 
the energy of the phonon with wave vector (q) by (Sa), 
we find, for longitudinal waves and Te=T= 4°, (8i)/koT 
= 0.6. For a mass of 1.6m0 in (15) the phonon energy 
would be 1.5koT. Thus equipartition is not well satisfied 
even for thermal electrons at 4°K. At an electron tem-

0° 15° 30° 45° 60° 75° 90° 
|00l] [III] [110] 

DIRECTION OF q 

FIG. I. The solid lines give the steady-state number of longi
tudinal and transverse phonons in n-Ge as a function of angle from 
the [001J direction in the [110] plane for an average phonon 
wave vector denned by Eq. (15) with (m) = 0.25ra0. Parameters 
assumed are Te = 10 T=40°, n==5XlOu/cms, X = l cm. The 
dashed lines give the thermal equilibrium number of phonons. 

<q> 
FIG. 2. The solid lines give the steady-state number of trans

verse phonons as a function of q (in the [100] direction) for n-Ge 
with L— 1 cm, and £ = 0.15 cm, and the other conditions the same 
as for Fig. 1. The dashed line gives the thermal equilibrium num
ber of phonons. 

perature of 10T or 40°K, (8l)/koT=2. The Planck for
mula gives (Nqi) as 0.16 for this phonon energy. These 
values have been calculated with m taken as 5.4X105 

cm/sec, the value in the £110] direction. Choosing 
2^=3.2X105 cm/sec, the average value in the [110] 
direction, we obtain (St)/koT= 1.2. The thermal equi
librium number of phonons for this energy is 0.43. 

Plots of Nqi and Nqt from the expression (12) for 
q= (q) are given in Fig. 1 as a function of orientation for 
Te=10 r=40° , w-5X1014/cm3, L=l cm (characteris
tic of one of the samples in Ref. 4), and the other pa
rameters those of ^-germanium. The deformation 
potentials have been taken as Ed =—9.07 eV, and Sw 

= 19.3 eV.14 It is seen that the departures from equi
librium are considerable. In a sample with £=0.15 cm, 
a more typical experimental value than 1 cm, the Nqi 
and Nqt values would be smaller than those shown in 
Fig. 1 by only about a factor 2.5, still departing con
siderably from equilibrium. The anisotropy, as indicated 
earlier, is what is expected from that of the matrix 
elements. It is easily seen that the plot of N^ and Nqt 

from 90° to 180° would be the image in the plane at 90° 
of the plot from 0° to 90°. 

It is also instructive to consider the variation of iVqa 

with the magnitude of q. From Eqs. (12)-(14) it can 
be seen that, if all other factors are constant, as q 
increases, Nqa decreases monotonically. This is shown 
in Fig. 2, where there is plotted the steady-state number 

14 H. Fritzsche, Phys. Rev. 115, 336 (1959); S. H. Koenig 
(private communication). 
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of transverse phonons as a function of q, for q in the 
[100] direction. To show the dependence on L, plots 
have been made for two values of L. All other pa
rameters are the same as for Fig. 1. 

I t is interesting to note that although Nqa must in
crease as Te rises above the lattice temperature, it does 
not continue to do so indefinitely.15 In the limit of 
large enough Te, provided, of course, that the condi
tions leading to (12) are still in force, (12) predicts that 
Nqa will decrease as Te~

112. 

III. EFFECTS ON TRANSPORT 

The effects of the phonon disturbance on mobility 
will be considered for the range of electron tempera
tures, perhaps 35 to 70°, in which n is essentially 
constant and carrier scattering is intravalley, and by 
acoustic modes mainly. We shall consider only the case 
of field applied in the [100] direction, which results in 
all valleys being at the same temperature Te. The re
sults are easily generalized to other cases. For this case 

for the entire conduction band at a lattice temperature 
T. I t is useful to introduce a kind of mean free path 
for acoustic mode scattering, defined by 

/ i = -

whApui2 

mtmmiii23d2koT 
(17) 

Under the substitutions that take the many-valley 
model over to the simple model, h goes over the mean 
free path for the simple model under equipartition. 
With (16) and (17) we may rewrite Fa: 

where 

and 

L n /T\W 

l~2hNc(T)\Te) 

iW n /T\*'2 

(16) 
Ne(T.W) Nc(Te) NC(T)\TJ 

where N0(T) represents the effective density of states 

(18) 

(19) 

(20) 

To obtain the relaxation time tensor, it is necessary to 
express Nqa in terms of the polar angles 0* and 0'*, and 
the azimuthal angles <p* and cp'*, of the vectors k* and 
k ' * (=k*±q*) , respectively. Neglecting the small dif
ference between the magnitudes of k* and k'*, we may 
write 

N*a=$a 

where x= S/koTe and 

(N^/^+ZiiSg/S^C-^ed e x p [ - / 2 x / 2 ] e x p [ - (2mlua
2/hTey'2f1x^-] 

l+$a Zi(3a/3dyC-W(0i) e x p [ - / 2 * / 2 ] { l - e x p [ - (2mluJ/hTeY^x^}' 
(21) 

jfi= [(cos0'*--cos0*)2+ (w*/wO{sin20'*+sin20* 

- 2 sin0'* sin0* cos (* /* - <P*)}]1/2 (22) 

/ 2 = l -cos0 '* cos0*-sin0'* sin0* c o s ( / * - <p*) (23) 

The angles 0* must, of course, also be expressed in 
terms of 0*, 0'*, <p*, a n d <p'** 

For constant energy surfaces that are ellipsoids of 
revolution, the independent components of the relaxa
tion time tensor may be written8 

definition 

A(k*->k'*) 

mtmill2V 

2*W 
-8^ | (k*± q* | Hi'+Ht' | k*) | 2 . (25) 

Introducing (5) and (17)-(20), (22) and (23), we may 
rewrite this 

1 

Til 

•3T cos0*(cos0/*-~cos0*) 

X(<A>>sm0Wsin0 'W*, (24a) 

1 Ui/mA^Te 
A= ( — ) - f 

2TT h\mt/ T KE A 2 /Nil 1 \ 

Sd/ \ $i 25V 

ui mt[Zt\ 

+—u .Ed/ \ $i 2$i/J 

1 3?r r* rT 

= / / {sin20*((A))-sin0 ,*sin0*(cos(^ ,*-^*)(A»} 

X s i n 0 W sin0'*ddf*, (24b) 

where A is the probability per unit time of scattering 
into unit solid angle in the * space, and the angular 
brackets indicate azimuthal averages.8 From the 

where the quantity in brackets contains all the angular 
dependence. When (26) is inserted into (24a) and (24b), 
we obtain results that may be written 

1 «j/*»A1/2 Te 
— = - ( — ) —&&<pp(x), 
rp h\mtJ T 

(27) 

16 Similar behavior is found for the somewhat different situation 
studied in E. M. Conwell, Phys. Chem. Solids (to be published). 

where /3 stands for || or J_. The functions <pp(x) are 
quite complicated, and the integration has not been 
carried out. The form (27) for T0 is nevertheless quite 
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useful when the phonon disturbance is not too large, 
i.e., for $1 not too large, because then, as we shall 
now show, we may neglect the dependence of <pp(x) 
on $i for the electrons that are important in determining 
the mobility. For the particular example discussed 
earlier, when L is in the range 0.1 to 0.15 cm, the term 
in the denominator of Nqa involving $i is always less 
than or of the order of 0.25. For electrons of somewhat 
less than average energy, which are the ones that con
tribute most to the mobility in this case, the error made 
in neglecting the term in Fa in the denominator of Nqa 

is pretty well canceled by neglecting also the term Npa 

in the numerator. Since also for these electrons, \ is 
small compared to Nqa, the terms (iVqa+J)/^* are 
essentially independent of $h and therefore <pp(x) de
pends very little on 5^. To a good approximation, then, 
for $i not too large (but_of course large enough so that 
Naa is dominant over Nqa) 1/rp is linear in $i. For 
larger values of $i, such as obtained in the example 
given earlier for L about 1 cm, the term involving $i 
in the denominator of Nqa is of the order of unity, and 
no simple approximation is possible. For such a case 
1/T/S will increase less rapidly than linearly with 5^. 

Since we have assumed a Maxwell-Boltzmann dis
tribution of the carrier energies, the relation between 
the mobility tensor and the relaxation time tensor is 
the same as for low fields. In the principal axis system 
the mobility is a diagonal tensor with components8 

W ( i ) = (e/mfi) ((XT(I)/(X)) . (28) 

For the field directed so that all valleys are at the same 
temperature, they all make the same contribution to 
the current. Also, by symmetry, for this direction of 
field the total current is parallel to the field. I t is easily 
shown then that the over-all mobility is given by the 
same expression as for low fields4: 

e r2(xTi) (XTU)' 

3(x)L mt mi ]• (29) 

Using (27) for m and n , and replacing $i with the use 
of (19), we obtain: 

e h hNc(T)/T\W 
JJ,=$-

(mtmi)112 uiL n W' (30) 

where $ is the dimensionless parameter defined by 

3L (x) mi (x) J 
(31) 

According to our earlier considerations, if the phonon 
disturbance is not too large, <£ depends only weakly on 
&i, and the dependences of /z on n, L and Te are essen
tially as given explicitly in (30). This should still be 
true in the presence of a small amount of impurity 
scattering, ionized or neutral. The main effects of such 
scattering would be to modify the value of <£, and to 

postpone the region in which (30) is valid to somewhat 
higher fields. 

To determine Te, we may use the usual method of 
equating the average rate of energy gain of an electron 
from the field efxE2 to the average rate of its energy 
loss. If we neglect the small phonon drift, the average 
rate of loss may be calculated from 

/dS\ 1 r /0Nqi\ /dNqt\-\ 

<*>=^?r<^)+ta'<Tr)J-(32) 

with (dNqa/dt) given by (9). For T e » r , which is the 
case of present interest, e~ho3*alkoTe may be replaced by 
(l — hoiqa/koTe). The curly bracket in (9) may then be 
approximated by 

{(N^+iye-^W'-N^} 

^ ( 1 + E FaWe-yWWfio>qci/hTe)-K (33) 

For $# not too large, the case we are now considering, 
the term in $a may be neglected. Physically, this indi
cates that at high enough electron temperature induced 
emission and absorption cancel each other, and the loss 
rate is determined by spontaneous emission. When the 
term in F is neglected, evaluation of (32) is simple. The 
summation over q is converted into an integration over 
2*, which is easily carried out to give 

\dt/ 

8 So2 (2koT/mtyi2 jr \ 3/2 

when 

h 

2 1 mi/Su 

-mtut Q 

3 3 =fe-i)i. 
mt\Sd / J 

(34) 

(35) 

I t is readily seen that under the usual substitutions (34) 
goes over to the rate of energy loss for the simple model.6 

Equating —(dS/dt) of (34) with e^E2, we obtain for 
the electron temperature: 

Te TrV^Sd/NciT)^2/^1'2 

27/4 K r̂© 
X-

ehE 

(»W2wi8)1 / ! !( iW* 
(36) 

I t is seen that, when the dependence of $ on Fi can be 
neglected, the electron temperature increases linearly 
with field, and decreases as the square root of n and L. 
Substituting Te/T given by (36) into (30), we find 

M= 
27/8^3/4 e /1/So\1/2//l\3/4/^o(r)\3/4 

7r1/8 (mtmi)112 ui\2d' \L/ \ n / 

(mF*miVW)z,Kk*Tyi* 
X . (37) 

(ehE) 1/2 
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Paranjape2 has carried out a derivation along similar 
lines for the simple model of the band structure, with 
the difference that he has assumed that the phonon 
lifetime is proportional to q~y. This leads to 

Mcc £-2(1-7)/(4-7). (38) 

For boundary scattering 7 = 0, and (38) gives \x & E~112, 
in agreement with (37), or more exactly with fx for the 
simple model obtained from (37) by the appropriate sub
stitutions. For 7 = 0 Paranjape also obtains y °c (nL)~s/i, 
in agreement with (37). 

If there were no disturbance of the phonon equi
librium, but the other conditions assumed above were 
valid, for Te>_^Q0 zero-point lattice conditions would 
prevail for n-Ge. In that case it can be shown, as was 
shown earlier for the simple model,16 that fx would be 
proportional to E~0-8, and independent of n and L, 
of course. 

As discussed earlier,4 it has been found experimentally 
at 4° in an n-Ge sample with ^=5Xl0 1 4 / cm 3 , £ = 0.15 
cm, in the field range from about 35 to 70 V/cm, that 
the dependence of mobility on field is about as predicted 
by (37). Comparison of the mobility in this sample 
with that in a sample of larger L has essentially verified4 

the predicted dependence on L. The situation in p-Ge 
is less clear. According to 4° measurements reported by 
Vul and Zavarickaya, on a sample with saturation hole 
density a little less than 1014/cm3 and cross-dimensions 
about 0.1 cmX 0.7 cm, in the range 20-70 V/cm the 
mobility is independent of field, while in the range 
70-200 V/cm it is proportional to E~~112.17 In the absence 
of detailed calculations for ^-Ge, it is of course not 

16 B. V. Paranjape, Proc. Phys. Soc. (London) B70, 628 (1959); 
see also E. M. Conwell and A. L. Brown, Phys. Chem. Solids 15, 
208 (1960). 

17 B. M. Vul and E. I. Zavarickaya, Proceedings of the Inter
national Conference on Semiconductor Physics, Prague, 1960 
(Czechoslovakian Academy of Sciences, Prague, 1961), p. 107. 

possible to predict whether a sizeable disturbance of 
the phonon distribution should exist under these con
ditions. Certainly, the possibility exists. Since the 
theoretical prediction of the simple model in the absence 
of a phonon disturbance is /x <* E~0-8, Paranjape4 reasoned 
that (1) the constant mobility in the range 20-70 
V/cm is evidence for a departure from the thermal 
equilibrium distribution, and (2) 7 = 1 , since that is 
the value required, according to Eq. (38), to produce 
constant mobility. A phonon lifetime oc^--1 may be 
obtained from phonon-phonon interactions for phonons 
of transverse branches, although not apparently for 
longitudinal phonons in Ge.11 Studies of conductivity 
as a function of size, similar to those made on n-Ge 
by Zylbersztejn,4 are not yet available for p-Ge. How
ever, it is difficult to see why phonon-phonon inter
actions would be important in p-Ge in this range when 
they are apparently not in n-Ge. In addition, it must 
be remembered that, in contrast to the situation for 
n-Ge, theories of high-field behavior based on the simple 
model of band structure have not been particularly suc
cessful for ^-Ge. I t has, for example, not been possible 
to account for the E~0-8 dependence of /x observed at 
78° for ^>-Ge.16 Thus it seems rather more likely that 
boundary scattering is predominant in ^>-Ge as well as 
n-Ge under the experimental conditions of concern, 
and the failure of the theory to predict constant mo
bility arises from too simple treatment of transport in 
the degenerate band structure. In any case, the ob
servation of constant mobility does not now appear to 
be interpretable as evidence for or against a disturbance 
of the phonon distribution. Measurements oij versus E 
for ^-Ge samples of different cross-dimensions would be 
helpful in clarifying the situation. 

In conclusion, it is reasonable to expect that dis
turbances of the phonon distribution similar to that 
found in n-Ge will be found in other semiconductors at 
low temperatures. 


